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1 Introduction
First we specify a model ARMA(1,1)-GARCH(1,1) that we want to estimate.
Secondly we touch upon the matter of fixing certain parameters of the model.
Thirdly we get som data to estimate the model on and estimate the model on
the data. After having estimated the model we inspect the created R-object
from the fitting of the model.

Then we use the model for making a forecast: 1) A simple forecast and
2) a rolling forecast and 3) a rolling forecast with reestimation of model.

Throughout I make some comments on calculation of VaR.

Reference manual, source code and a very helpful vignette is available at:

http://cran.r-project.org/web/packages/rugarch/index.html

I refer to the referencemanual and vignette when relevant so if not for any
other reason - although other reasons are plenty - it is a good idea to download
and read these.

The author of the rugarchpackage Alexios Ghalanos has a blog:

http://www.unstarched.net/blog/

Im using rugarch: Univariate GARCH models R-package version 1.2-2 by
Alexios Ghalanos.

2 Modelspecification - »uGARCHspec«
To fit a GARCH-model the first step is to create an instance of the S4-class
uGARCHspec. The created object serves the purpose of specifying the model
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to be estimated. The chosen model can be estimated with all parameters free
or alternatively with some parameters fixed.

2.1 Modelspecification (free parameters only)
The uGARCHspec class is documented on page 86 of the rugarch referencema-
nual and the usual helpage is found typing ?ugarchspec in R-console. On
the help page we find the following peace of code:

model=ugarchspec(
variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(1, 1), include.mean = TRUE),
distribution.model = "norm"
)

For simplicity I have left out some options we are not going to use which
are explicited on the helppage. Also I have added the model=... so that our
instance of the uGARCHspec class i called model.

So when creating the model we specify the variance.model, the mean.model
and the distribution.model. Notice that the first two arguments mean.model
and variance.model takes arguments that are objects of the type list.

We have set the argument model in the variance.model to have the value
"sGARCH" with garchOrder=c(1,1) so that our choice of variancemodel is:

σ2
t = ω + αε2

t−1 + βσ2
t−1 (1)

as explained in the vignette on page 6 with p=1, q=1 and m=0 since we are
ignoring external regressors.

The meanmodel is chosen to have armaOrder=c(1,1) and we include a
mean - constant - by mean=TRUE so that our chosen model is:

rt = µ+ θ1(rt−1 − µ) + θ2εt−1 + εt (2)

When specifying the distribution we have chosen a normaldistribution using
the argument "norm" so:

εt = σtzt zt ∼ N(0, 1) (3)

often one would choose other distributions due to the stylished fact of fi-
nancial series having fat tails. One option would be to use the Student-t
distribution distribution.model="std" or a skewed version of it "sstd".
The conditional distributions are discussed on page 13 of the vignette.
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2.2 Modelspecification (fixed parameters)
We might want to fix some or all of the parameters in the model. We could fix
some of the parameters and estimate the rest for example with the purpose
of making likelyhood ratio comparison. We could also fix all parametervalues
with the purpose of using the model for forecasting or simulation.

To fix the parameters we need to use the argument fixed.pars = list()
in the ugarchspec() see helppage ?ugarchspec. We also need to find the
name of the parameter we want to fix. If you have chosen a modeltype for
example the sGARCH in our case you can find the name of the relevant para-
meters by typing spec@model.pars. You need to substitute spec with the
name you gave to your instance of the uGARCHspec class, which in our case
was model so we simply type model@model.pars.

From the top: First we choose the sGARCH-model but lets try it with
higher order ARMA and GARCH and a skewed version og the Student-t:

model2=ugarchspec(
variance.model = list(model = "sGARCH", garchOrder = c(2, 2)),
mean.model = list(armaOrder = c(2, 2), include.mean = TRUE),
distribution.model = "sstd")

Then to inspect the parameternames:

model2@model$pars

And you should get a printout similar to the one in tabel 1. From the table
the names of the parameters are available in the first column and the fourth
column takes the value 1 where the relevant parameter is included 0 otherwi-
se. The fifth column - called »Estimate« - indicates whether the parameter is
estimated or fixed. So β in our GARCH-model when the garchOrder=c(1,1)
is probably called beta1 if there is any justice in the world. So to fix the pa-
rameter we do:

model=ugarchspec(
variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(1, 1), include.mean = TRUE),
distribution.model = "norm"
fixed.pars = list(beta1=0.86) )

You can try model@model$pars to see if the relevant parameter has been set
to the chosen value.
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Tabel 1: R-print from model2@model$pars
Level Fixed Include Estimate LB UB

mu 0 0 1 1 NA NA
ar1 0 0 1 1 NA NA
ar2 0 0 1 1 NA NA
ma1 0 0 1 1 NA NA
ma2 0 0 1 1 NA NA
arfima 0 0 0 0 NA NA
archm 0 0 0 0 NA NA
mxreg 0 0 0 0 NA NA
omega 0 0 1 1 NA NA
alpha1 0 0 1 1 NA NA
alpha2 0 0 1 1 NA NA
beta1 0 0 1 1 NA NA
beta2 0 0 1 1 NA NA
gamma 0 0 0 0 NA NA
eta1 0 0 0 0 NA NA
eta2 0 0 0 0 NA NA
delta 0 0 0 0 NA NA
lambda 0 0 0 0 NA NA
vxreg 0 0 0 0 NA NA
skew 0 0 1 1 NA NA
shape 0 0 1 1 NA NA
ghlambda 0 0 0 0 NA NA

3 Getting data
Before we can estimate the model we have to get som data. You can use the
SP500 index which is included in the rugarchpackage simply type:

data(sp500ret)

and then the sp500-index is loaded and is called sp500ret. Alternatively you
can load data from Yahoo using the get.hist.quote() function from the
package tseries:

library(tseries)
sp500.prices=get.hist.quote(

instrument = "^GSPC",
quote = "Adj",
provider = c("yahoo"), method = NULL,
origin = "1899-12-30", compression = "d",
retclass = c("zoo"), quiet = FALSE, drop = FALSE
)
sp500=as.data.frame(sp500.prices)
N=length(sp500[,1])
sp500.returns=100*(log(sp500[2:N,])-log(sp500[1:(N-1),]))

This downloads the adjusted closing prices - adjusted for dividends - and
calculates continously compounded returns.
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4 Estimating the model
To estimate the model we use the model-object created and the data sp500ret
and provide them as arguments to the uGARCHfit() function:

modelfit=ugarchfit(spec=model,data=sp500ret)

This creates an object we have chosen to call modelfit which is an instance
of the S4 class uGARCHfit specific to the rugarchpackage as documented on
page 65 of the rugarch reference manual.

This object is far more interesting in than the model in the sence that it
contains information we need to be able to manipulate and as a minimum
print. First of all simply typing the objectname prints the parameterestima-
tes of the model along with standard errors and a lot of interesting statistics
(as is custom in R):

modelfit

I’m not going to delve on these statistics they are explained better elsewhere.
References for the relevant litterature can be found in the rugarchvignette.
However I will make a comment on S4-objects. Just to repeat: Estimating
the model creates the object we have chosen to call modelfit as an instance
of the class uGARCHfit to get the class type:

class(modelfit)
#[1] "uGARCHfit"
#attr(,"package")
#[1] "rugarch"

Another useful feature is that you can get the structure of the object by
typing str(modelfit). This results in a somewhat »messy« print but if you
look for the @ you should be able to spot the following structure in the prin-
tout:

Formal class ’uGARCHfit’ [package "rugarch"] with 2 slots
..@ fit
..@ model

Since we have an S4 object the object has what is called slots and in this
case there are 2 slots the first is called fit the second model. This is also
apparent typing slotNames(modelfit). Lets think of the slots as places to
store data and in each of the slots there are »containers« where every con-
tainer is indicated by $ (the containers are offcourse R-objects like vectors,
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matrices or lists). Reading the print from str(modelfit) you will notice
that the first $ is followed by hessian:

Formal class ’uGARCHfit’ [package "rugarch"] with 2 slots
..@ fit :List of 25
.. ..$ hessian

This is interesting because it tells you how to access the information stored
in the object by typing:

modelfit@fit$hessian

You could get the parameterestimates by typing:

modelfit@fit$coef

The fitted values:

modelfit@fit$fitted.values

The point is that how to access the data is indicated from the str(modelfit)
printout. However you could also use the designed methods which are docu-
mented on page 65 of the reference manual:

coef(modelfit)
infocriteria(modelfit)
sigma(modelfit)
fitted(modelfit)
residuals(modelfit)

To name a few. Be sure to update R and rugarch package since the avai-
lable methods possibly change from version to version (I had problems with
the method quantile used when calculating VaR). To calculate VaR use the
quantile method:

VaR=quantile(modelfit,0.01)

or in our case with standardized normal distribution we could do:

VaR=modelfit@fit$sigma*qnorm(0.01)+modelfit@fit$fitted.values

Since the model is estimated on the observations from the periods for which
we calculate VaR this is called in-sample VaR. As such it may seem uinte-
resting since what would be the purpose of calculating a riskmeasure of an
already realized contingency? Hence later we do forecasting.
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5 Forecasting
Having estimated a model we might want to use it for forecasting. Reading
the helpfile ?ugarchforecast it says:

ugarchforecast(fitORspec, data = NULL, n.ahead = 10, n.roll = 0,
out.sample = 0)

So the first argument is an estimated model - fit - or a specified model -
spec. Using a specified model all parametervalues need to be fixed and the
data argument cannot be NULL. Using a fitted object the data is contained
in the fitted object and hence do not need to be supplied, so the data=NULL
can be used to forecast from the same series as used in estimation.

In our case the fitted model modelfit is used for forecasting. First lets
do a simple forecast:

modelfor=ugarchforecast(modelfit, data = NULL, n.ahead = 10, n.roll
= 0, out.sample = 0)

The last observation of the used dataset has the date 2009-01-30 and this is
T0 in the forecast:

0-roll forecast [T0=2009-01-30]:
Series Sigma

T+1 0.0016724 0.02480
T+2 0.0015259 0.02474
T+3 0.0013981 0.02467
T+4 0.0012865 0.02461
T+5 0.0011891 0.02455
T+6 0.0011041 0.02448
T+7 0.0010299 0.02442
T+8 0.0009651 0.02436
T+9 0.0009086 0.02430
T+10 0.0008592 0.02424

The object modelfor is an instance of the class uGARCHforecast page 71 of
the referencemanual. The object has two slots with names:

slotNames(modelfor)
# [1] "forecast" "model"

You can access the forecast of the series with method fitted(modelfor)
and the sigma (the conditional standard deviation) as sigma(modelfor).
Also available are some plots plot(modelfor) and then select an appropri-
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ate option.
We could forecast with a larger n.ahead=50

modelfor=ugarchforecast(modelfit, data = NULL, n.ahead = 50, n.roll
= 0, out.sample = 0)

An using str(modelfor) we can see that the adress for the seriesforecast is
modelfor@forecast$seriesFor and we can do a simple plot:

plot(modelfor@forecast$seriesFor)

exhibiting exponential decay to unconditional mean modelfit@fit$coef["mu"]
or by method uncmean(modelfit).

5.1 Rolling forecast
Using a model for forecast it might be interesting to see how well the model
forecasts so we need som observations to compare with the forecasted values.
For this reason it is possible to fit the model with the argument out.sample
different than 0. In this case it becomes possible to do rolling 1-step-head
forecasts. To use this option we have to estimate the model not on all obser-
vations hence we use the out.sample argument. For simplicity I choose the
out.sample=2 and I choose a GARCH-model with a simpler meanequation
ARMA(0,0):

model=ugarchspec (
variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(0, 0)),
distribution.model = "norm"
)
modelfit=ugarchfit(model,data=sp500ret,out.sample=2)

So fx. if we have 500 observations and choose out.sample=100 we would
be estimating the model on the first 400 observations. With the dataset
sp500ret we have N = 5523 observations so the index of the last observa-
tion on which the model is estimated on is T = 5521 since we have chosen
out.sample=2:

modelfit@model$modeldata$T
# 5521

Then we do the forecasts:

modelfor=ugarchforecast(modelfit, data = NULL, n.ahead = 1, n.roll
= 2, out.sample = 2)
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and we look at the forecasted values:

sigma(modelfor)
# 2009-01-28 2009-01-29 2009-01-30
# T+1 0.02413003 0.02512952 0.02492642
fitted(modelfor)
# 2009-01-28 2009-01-29 2009-01-30
# T+1 0.0005205228 0.0005205228 0.0005205228

The values are forecasted values based on the information of the listed date,
the values are not forecasts for the expected value of the specific date. Ob-
servation T = 5521 is the T0 observation which in sp500ret has the date
2009-01-28 and being part of the sample on which the model is estimated
there can be no forecast for the date (following conventional terminology and
only calling something a forecast if it is out-of-sample).

Anyway since we have a simple model it should be easy to control for this
by manual calculation. The mean is constant in our model so the forecast
of the returnseries for any period is simply the estimated constant mean
coef(modelfit)["mu"]. For the period T = 5521 we have an estimated
residual residuals(modelfit)[5521] but for the two periods for which we
are forecasting we lack these but can calculate them comparing forecast of
the series - the constant mean - to the observed return. With these residuals
we can forecast the sigmas.

We could redo the forecasting manually along above lines with the fol-
lowing script:

#Getting the expected return from the estimated model
mu=coef(modelfit)["mu"]
#Getting the relevant observed return from last
# two periods of sp500ret
return=sp500ret[5522:5523,]
#Getting residual of period T=5521 from modelfit
e5521=as.vector(residuals(modelfit)[5521])
#Calculating residuals of period T=5522 and 5523
e5522=return[1]-mu
e5523=return[2]-mu
#Taking estimated parameters from modelfit
theta=coef(modelfit)
#Making function for forecast
.fgarch=function(e,sigma_0,theta) {

omega=theta["omega"]
alpha=theta["alpha1"]
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beta=theta["beta1"]
sigma_1 = sqrt(omega + alpha*e^2 + beta*sigma_0^2)
names(sigma_1)=NULL
return(sigma_1)
}

#Getting estimated sigma for period T=5521 from modelfit
sigma5521=as.vector(sigma(modelfit)[5521])
#Forecast sigma_5522 and comparing with rugarch forecast
sigma5522=.fgarch(e5521,sigma_0=sigma5521,theta)
sigma5522
sigma(modelfor)[1]
#Forecast sigma_5523 and comparing with rugarch forecast
sigma5523=.fgarch(e5522,sigma_0=sigma5522,theta)
sigma5523
sigma(modelfor)[2]
#Forecast sigma_5523 and comparing with rugarch forecast
sigma5524=.fgarch(e5523,sigma_0=sigma5523,theta)
sigma5524
sigma(modelfor)[3]

And we are able to get the same values manually as using the rugarch fun-
ction ugarchforecast. Following the script hopefully makes it clear what is
being reported calling sigma(modelfor) and fitted(modelfor) if that was
somehow unclear to begin with.

If the meanequation was ARMA(1,1) it would be a little more complicated
due to the expected return of the next period not simply being a constant.
First we calculate the variance for T1:

σ2
T1 = ω̂ + α̂ε2

T0 + β̂σ2
T0 (4)

and we forecast the returnseries using the meanmodel:

rT1 = µ̂+ θ̂1(rT0 − µ̂) + θ̂2εT0 (5)

Comparing the predicted return rT1 to the observed r+1 we can calculate a
new residual εT1 = r+1 − rT1 . And given this residual we can calculate a new
1-step-head forecast for period T2 for both the sigma and the returnseries.
With the forecast rT2 caculated we can calculate εT2 = r+2 − rT2 and so on
by iteration. Since we constantly allow ourselves to use last periods return
in forecasting the return for the next period we say n.ahead=1, hence con-
ditioning on the information Ωt−1.
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Since we have calculated sigmas out-of-sample we could use these to calcu-
late VaR out of sample. Since the density of our model is normal the 1-step-
head density is normal with the forecasted standard deviation given that the
model is valid. To calculate VaR - using the simple GARCH model with the
constant meanequation - we would do:

qnorm(0.05)*sigma(modelfor)+coef(modelfit)["mu"]

or using the built in function of the rugarchpackage:

quantile(modelfor,0.05)

If not using the model with the constant mean but instead using the AR-
MA(1,1) for meaneqation (or another meaneqaution for that matter) do:

qnorm(0.05)*sigma(modelfor)+fitted(modelfor)

or using the built in function of the rugarchpackage:

quantile(modelfor,0.05)

Having used the forecast for a period where actual observations are available
we gain two new plot options using: plot(modelfor) where we now can do
the rolling options.

6 Rolling forecast with reestimation
If we want to know how well our model does VaR calculation we would
probably want to calculate VaR out of sample since this mimics the actual
practice closer. Calculating VaR on a dayli basis it probably would not be
a problem to reestimate the model every day hence reestimating for each
1-step-head VaR calculation. However if we want to leave 1000 observations
out of sample to calculate 1000 out of sample VaR measures we would ha-
ve to reestimate the model 1000 times and this would be computationally
heavy and timecomsuming. On the other hand simply calculating 1000 VaR
measures without reestimation would probably not mimic atual practice and
would due to changing parameters give bad VaR estimates.

A compromize using the sp500ret would be to out.sample=1000 hence
first estimating the model on 5523−1000 = 4523 observations. Then calculate
50 1-step-ahead forecasts and out-of-sample VaR estimates and the reesti-
mate the model on the observations 1, 2, ..., 4535, ..., 4583. Based on the new
parameterestimates we could then do yet another 50 1-step-ahead forecasts
continuing like this until we have forecasts and VaR calculated for all 1000

11



out of sample observations.

6.1 Doing a rolling forecast
The rugarchpackage allows this to be done quite easily using the ugarchroll.
Lets try doing this with the ARMA(1,1)-GARCH(1,1)-model leaving only
100 observations out-of-sample and refitting every 50 observations so as not
to be overwhelmed by the complexity of the returned object:

model=ugarchspec (
variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(1, 1)),
distribution.model = "norm"

)
modelroll=ugarchroll (

spec=model, data=sp500ret, n.ahead = 1, forecast.length = 100,
n.start = NULL, refit.every = 50, refit.window = c("recursive"),
window.size = NULL, solver = "hybrid", fit.control = list(),
solver.control = list(), calculate.VaR = TRUE, VaR.alpha = c(0.01,
0.05),
cluster = NULL, keep.coef = TRUE

)

So we choose the model using ugarchspec and give this as an argument value
to ugarchroll by spec=model. Since the model has not been estimated we
have to decide what data to use data=sp500ret. We use the n.ahead=1 and
as said on the ?ugarchroll helppage » Only rolling 1-ahead forecasts are
supported spanning the dataset, which should be useful for backtesting mo-
dels. Anything more complicated should be wrapped by the user by making
use of the underlying functions in the package.«

Lets have a look at the returned object:

slotNames(modelroll)
#[1] "model" "forecast"

Object returned has two slots and we take a closer look on the second:

str(modelroll@forecast)
#List of 2
# $ VaR :’data.frame’: 100 obs. of 3 variables:
# ..$ alpha(1%): num [1:100] -0.032 -0.0378 -0.0364 -0.036 -0.0345
# ..$ alpha(5%): num [1:100] -0.0224 -0.0262 -0.0253 -0.0252 -0.0241
# ..$ realized : num [1:100] -0.03473 0.00613 0.01371 0.00212 -0.04828
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# $ density:’data.frame’: 100 obs. of 6 variables:
# ..$ Mu : num [1:100] 0.000792 0.001651 0.001418 0.001015 0.000935
# ..$ Sigma : num [1:100] 0.0141 0.0169 0.0162 0.0159 0.0152
# ..$ Skew : num [1:100] 0 0 0 0 0 0 0 0 0 0
# ..$ Shape : num [1:100] 0 0 0 0 0 0 0 0 0 0
# ..$ Shape(GIG): num [1:100] 0 0 0 0 0 0 0 0 0 0
# ..$ Realized : num [1:100] -0.03473 0.00613 0.01371 0.00212 -0.04828

We see that we get some obejcts with 100 recorded values since we left 100
observations out of sample. We get the Value at Risk measure for the long
position α = 0.01 and α = 0.05 because we chose calculate.VaR = TRUE,
VaR.alpha = c(0.01,0.05) in the ugarchroll() call. Also included in the
VaR-data-frame is the realized values which is the actual returns from the pe-
riod associated with the calculated VaR which is a nice feature when we have
to calculate whether or not a VaR-violation has occured - a VaR-violation
being defined as an instance where the realized return is smaller than the
VaR-measure (long position). Lets just calculate the rate of VaR-violations
for:

VaR=modelroll@forecast$VaR[,"alpha(1%)"]
return=modelroll@forecast$VaR[,"realized"]
Hit=return<VaR
sum(Hit)
#5

So there are 5 VaR-violations out of 100 observations which is exactly the
5% expected given a α = 0.05 (so the model would pass the Kupiec test at
least for α = 0.05).

We also get a density data-frame where the values of the forecasted
expected returned is stored under modelroll@forecast$density[,"Mu"]
and the forecasted volatility is stored as modelroll@forecast$density[,"Sigma"].
Have a look at the reference manual on page 80 for the »uGARCHroll« in
order to see methods for this class.

The Skew, Shape and Shape(GIG) are all 0 because they relate to pa-
rameters of the chosen distribution of the model and since we are using
standadized normal distribution these are all 0.

So one question could be: How do I calculate the VaR of another α-level?
One option would be to restimate - hence doing the ugarchroll again but
as should be apparent from earlier calculations this is unecessary. Simply do:

q_st=qnorm(0.025)
sigma=modelroll@forecast$density[,"Sigma"]
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mu= modelroll@forecast$density[,"Mu"]
Var_0025=q_st * sigma + mu

If you are using another distribution you should use the qdist() function
as explained on page 13 of the rugarch vignette. This function should be gi-
ven the relevant parameter values as explained on page 13-18 of the rugarch
vignette. Here is an example using the Skewed Student t distribution in an
ARMA(1,1)-GARCH(1,1) model on the sp500ret dataset:

model=ugarchspec (
variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(1, 1)),
distribution.model = "sstd"
)
modelroll=ugarchroll (
model, data=sp500ret, n.ahead = 1, forecast.length = 100,
n.start = NULL, refit.every = 50, refit.window = c("recursive"),
window.size = NULL, solver = "hybrid", fit.control = list(),
solver.control = list(), calculate.VaR = TRUE, VaR.alpha = c(0.01,
0.05),
cluster = NULL, keep.coef = TRUE
)
# getting the estimated skew from modelroll
skew.estimate=modelroll@forecast$density[,"Skew"]
# getting the estimated shape from modelroll
shape.estimate=modelroll@forecast$density[,"Shape"]
# using quantile funtion from rugarchpackage
# setting skew and shape according to estimates
# other values kept as specified in vignette
q_st=qdist(distribution="sstd",p=0.05,mu=0,
sigma=1,lambda=-0.5,skew=skew.estimate,shape=shape.estimate)
mu=modelroll@forecast$density[,"Mu"]
sigma=modelroll@forecast$density[,"Sigma"]
VaR=sigma*q_st+mu

6.2 Different roll-procedures
Doing a forecast we could choose to specify forecast.length,refit.every
and refit.window. Above we used the argument forecast.length=100 to
leave 100 observations out-of-sample leaving the rest 5423 observations a
in-sample. As a consequence the first model is estimated on the 5423 in-
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sample observations. Also we chose to refit the model every 50 observa-
tions refit.every=50 meaning that the first model would be used for 50
forecasts, that is fore period 5423 + 1, 5423 + 2, ..., 5423 + 50. Then the
model is reestimated and another 50 forecasts are made for the periods
5473 + 1, 5473 + 2, ..., 5473 + 50 after which forecassts have been made for
all periods left as out of sample. Leaving out 100 observations but reesti-
mating for every 51 observations results in the first model being used for
51 forecasts and the other for 49 and in general the last model estimated
will be used for less forecasts. But on what observations are the models
estimated? The window could be recursive in which case the model is esti-
mated on all observations with lower index than the index of the first period
for which the model is used to forecast. The second model in our example
would be estimated on observations 1, 2, 3, ..., 5473 however if instead using
a moving window refit.window="moving" the second model would only be
estimated on observations 51, ..., 5473 moving forward the first observation
by refit.every=50 every time a new model is estimated. Using the first
procedure each model is estimated on an increasing sample size while using
the second procedure keeps the sample size constant.

Instead of specifying forecast.length,refit.every and refit.window
one could leave out forecast.length and instead choose n.start indication
where in dataset to start rolling forecast. As an example lets say number of
observations are N = 1000 and we choose n.start=800 then the forecast
length is 200. If you at the same time specify the forecast.length=100 it
will automatically be overwritten to have the value forecast.length=200.
Otherwise the procedure is the same so with the first model i estimated on
1, ..., 800 and with refit.every=50 used to forecast for 800 + 1, ..., 800 +
50 and then the second model is estimated on 1, ..., 850 if refit.window=
c("recursive") and on 51, ..., 850 if refit.window=c("moving").

Another way the determine the procedure is to specify forecast.length,
refit.every and window.size and refit.window=c("window"). Assuming
we have N = 1000 observations and forecast.length=100 so that 100 ob-
servations are left out-of-sample (as we now know only for the initial model
so it would be more correct to say that choosing forecast.length deter-
mines for how many periods forecasts are going to be calculated thus ex-
plaining the name of the argument). Assume we choose refit.every=50
as a consequence the estimation of two models would be suffcient. Assume
further that we choose a window.size=500 this result is that each model
is estimated in 500 observations the first observation for the first model be-
ing N-forecast.length-window.size=1000-100-500=400. The first model
is estimated on observations 400, 401, ..., 900 the second on 450, ..., 950 becau-
se refit.every=50. If refit.window=c("recursive") the window.size is
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ignored so that the first model is estimated on 1, ..., 900 and the second on
1, ..., 950. But what if the total sample N is to small for the first model to
be estimated on a window with the specified window size? Let N = 1000
and forecast.length=300 and refit.every=50 then 700 observations are
available to estimate the first model on and 750 for the second and 800 for
the third etc. As a consequence choosing window.size=770 will result in the
first model being estimated on 1, ..., 700 (hence less than chosen because only
700 are available) and the second model will be estimated on observations
1, ..., 750 hence also less than chosen and the third model will be estimated
on 30, 31, ..., 800.

Again remember that the created object can be inspected by str() so to
investigate the consequences of different choices have a look at str(modelroll
@model) to see how $rollind and $out.sample among others change de-
pending on how you choose to specify the forecasting procedure.
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